Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 917: 148456, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38604507

RESUMO

Various genetic variants have been found to be associated with the clinical onset of premature ovarian insufficiency (POI). However, when measured in vitro, the functional influence of the variants can be difficult to determine. By whole-exome sequencing (WES) of 93 patients with sporadic POI, we found a missense variant c.623G > A;p.R208H in the EIF4ENIF1 gene. In silico prediction of the variant using different algorithms suggested it might be a damaging variant. We compared the property of EIF4ENIF1 R208H and Q842P, a POI-related mutant that we reported previously, with wildtype (WT) protein using 293FT cells in vitro. Surprisingly, a change in subcellular distribution and granule forming ability (Q842P) and nuclear import capacity (R208H) was not observed, despite domain prediction evidences. Since EIF4ENIF1 was reported to inhibit translation, we employed T&T-seq, a translation-transcription dual-omics sequencing method, to profile gene expression upon overexpression of EIF4ENIF1 WT and mutants. EIF4ENIF1 WT overexpression group exhibited significantly (P < 0.0001) lower translation efficiency (TE) than empty vector or GFP overexpression control group. Surprisingly, EIF4ENIF1 Q842P overexpression failed to repress global translation, showing an overall TE significantly higher than WT group. Overexpression R208H significantly (P < 0.0001) lowered the overall TE, whereas exhibiting a reduced translation inhibitory effect on high-TE genes (TE > 2 in GFP control group). Several fertility-associated genes, such as AMH in Q842P group and SERPINE1 and THBS1 in R208H group, was translationally up-regulated in mutant groups versus WT control, suggesting a potential mechanism of mutated EIF4ENIF1 causing POI via impaired translation repression. It is further proposed that T&T-seq can be a sensitive evaluation tool for the measurement of functional alteration by variants in many other translational regulator genes, not only EIF4ENIF1, helping to eliminate misinterpretation of clinical significance of genetic variants.

2.
J Ovarian Res ; 17(1): 67, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528613

RESUMO

BACKGROUND: Premature ovarian insufficiency (POI) is a severe disorder leading to female infertility. Genetic mutations are important factors causing POI. TP63-truncating mutation has been reported to cause POI by increasing germ cell apoptosis, however what factors mediate this apoptosis remains unclear. METHODS: Ninety-three patients with POI were recruited from Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Whole-exome sequencing (WES) was performed for each patient. Sanger sequencing was used to confirm potential causative genetic variants. A minigene assay was performed to determine splicing effects of TP63 variants. A TP63-truncating plasmid was constructed. Real-time quantitative PCR, western blot analyses, dual luciferase reporter assays, immunofluorescence staining, and cell apoptosis assays were used to study the underlying mechanism of a TP63-truncating mutation causing POI. RESULTS: By WES of 93 sporadic patients with POI, we found a 14-bp deletion covering the splice site in the TP63 gene. A minigene assay demonstrated that the 14-bp deletion variant led to exon 13 skipping during TP63 mRNA splicing, resulting in the generation of a truncated TP63 protein (TP63-mut). Overexpression of TP63-mut accelerated cell apoptosis. Mechanistically, the TP63-mut protein could bind to the promoter region of CLCA2 and activate the transcription of CLCA2 several times compared to that of the TP63 wild-type protein. Silencing CLCA2 using a specific small interfering RNA (siRNA) or inhibiting the Ataxia Telangiectasia Mutated (ATM) pathway using the KU55933 inhibitor attenuated cell apoptosis caused by TP63-mut protein expression. CONCLUSION: Our findings revealed a crucial role for CLCA2 in mediating apoptosis in POI pathogenesis, and suggested that CLCA2 is a potential therapeutic target for POI.


Assuntos
Menopausa Precoce , Insuficiência Ovariana Primária , Fatores de Transcrição , Proteínas Supressoras de Tumor , Feminino , Humanos , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Éxons , Menopausa Precoce/genética , Mutação , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Proteínas Supressoras de Tumor/genética
3.
Eur J Obstet Gynecol Reprod Biol ; 294: 198-205, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295708

RESUMO

BACKGROUND: Müllerian duct anomalies (MDAs) are congenital developmental disorders exhibiting as a variety of malformations of female reproductive tract. The identified etiology of MDAs is limited. The present study aimed to unravel the underlying genetic causes of MDAs. METHODS: Rare variants in androgen receptor (AR) were called from the cohort consists of patients with MDAs and underwent whole exome sequencing (WES) at Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China. Sanger sequencing was used to confirm the causative genetic mutations. In silico analysis were used to classify the pathogenicity of each variant. Molecular modeling and simulations were conducted to investigate the conformational changes between the wild-type (WT) and mutant proteins. RESULTS: A total of 3 rare heterozygous variants in AR from the MDAs cohort in our institution were identified, with unknown effects. All variants were missense mutations, including c.173A > T, c.558C > A and c.1208C > T, and were absent or rare in East Asian populations in Genome Aggregation Database and the Exome Aggregation Consortium Database. According to the American College of Medical Genetics and Genomics guidelines, c.1208C > T variant was classified as likely pathogenic, while the other two were variants of uncertain significance. During molecular dynamics simulations, WT and mutant proteins all reached stable status according to root-mean-square variance. Values of radius of gyration showed that Q58L and S186R protein would be more compact than WT, while the structure of A403V became looser. Despite, in comparison with WT, the number of hydrogen bonds increased in Q58L, while decreased in the other two variants. Furthermore, the solvent-accessible surface area diminished in Q58L and A403V while enlarged in S186R proteins, when compared with WT. CONCLUSIONS: To our knowledge, this is the first report regarding the association of AR mutation and MDAs. The identification of these variants, predicted to damage the structure and function of AR protein, not only expanded the mutational spectrum of causative genes of MDAs, but provide novel molecular genetic reference for future studies.


Assuntos
Ductos Paramesonéfricos , Receptores Androgênicos , Gravidez , Humanos , Feminino , Ductos Paramesonéfricos/anormalidades , Receptores Androgênicos/genética , Mutação , Mutação de Sentido Incorreto , Proteínas Mutantes
4.
Hum Genomics ; 16(1): 10, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361250

RESUMO

Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome, also known as Müllerian agenesis, is characterized by uterovaginal aplasia in an otherwise phenotypically normal female with a normal 46,XX karyotype. Previous studies have associated sequence variants of PAX8, TBX6, GEN1, WNT4, WNT9B, BMP4, BMP7, HOXA10, EMX2, LHX1, GREB1L, LAMC1, and other genes with MRKH syndrome. The purpose of this study was to identify the novel genetic causes of MRKH syndrome. Ten patients with MRKH syndrome were recruited at Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China. Whole-exome sequencing was performed for each patient. Sanger sequencing confirmed the potential causative genetic variants in each patient. In silico analysis and American College of Medical Genetics and Genomics (ACMG) guidelines helped to classify the pathogenicity of each variant. The Robetta online protein structure prediction tool determined whether the variants affected protein structures. Eleven variants were identified in 90% (9/10) of the patients and were considered a molecular genetic diagnosis of MRKH syndrome. These 11 variants were related to nine genes: TBC1D1, KMT2D, HOXD3, DLG5, GLI3, HIRA, GATA3, LIFR, and CLIP1. Sequence variants of TBC1D1 were found in two unrelated patients. All variants were heterozygous. These changes included one frameshift variant, one stop-codon variant, and nine missense variants. All identified variants were absent or rare in gnomAD East Asian populations. Two of the 11 variants (18.2%) were classified as pathogenic according to the ACMG guidelines, and the remaining nine (81.8%) were classified as variants of uncertain significance. Robetta online protein structure prediction analysis suggested that missense variants in TBC1D1 (p.E357Q), HOXD3 (p.P192R), and GLI3 (p.L299V) proteins caused significant structural changes compared to those in wild-type proteins, which in turn may lead to changes in protein function. This study identified many novel genes, especially TBC1D1, related to the pathogenesis of MRKH syndrome. The identification of these variants provides new insights into the etiology of MRKH syndrome and a new molecular genetic reference for the development of the reproductive tract.


Assuntos
Transtornos 46, XX do Desenvolvimento Sexual , Transtornos 46, XX do Desenvolvimento Sexual/diagnóstico , Transtornos 46, XX do Desenvolvimento Sexual/genética , Anormalidades Congênitas , Feminino , Genômica , Humanos , Ductos Paramesonéfricos/anormalidades , Sequenciamento do Exoma
5.
Fertil Steril ; 116(5): 1360-1369, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34311961

RESUMO

OBJECTIVE: To explore the genetic causes of Herlyn-Werner-Wunderlich syndrome (HWWS) using whole-exome sequencing. DESIGN: Retrospective genetic study. SETTING: Academic medical center. PATIENT(S): Twelve patients with HWWS. INTERVENTION(S): Whole-exome sequencing was performed for each patient. Sanger sequencing was used to confirm the potential causative genetic variants. In silico analysis and American College of Medical Genetics and Genomics guidelines were used to classify the pathogenicity of each variant. MAIN OUTCOME MEASURE(S): Rare sequence variants associated with müllerian duct development and renal agenesis were identified and included in subsequent analyses. RESULT(S): A total of 11 variants were identified in 10 of 12 patients (83.3%) and were considered to constitute a molecular genetic diagnosis of HWWS. These 11 variants were related to 9 genes: CHD1L, TRIM32, TGFBR3, WNT4, RET, FRAS1, FAT1, FOXF1, and PCSK5. All variants were heterozygous and confirmed by Sanger sequencing. The changes included one frameshift variant, one splice-site variant, and eight missense variants. All of the identified variants were absent or rare in Genome Aggregation Database East Asian populations. One of the 11 variants (9.1%) was classified as a pathogenic variant according to the American College of Medical Genetics and Genomics guidelines, and 8 of the 11 variants (72.7%) were classified as variants of uncertain significance. CONCLUSION(S): To our knowledge, this is the first report of the genetic causes of HWWS. Renal agenesis-related genes, such as CHD1L, TRIM32, RET, and WNT4, may be associated with HWWS. Identification of these variants can not only help us understand the etiology of HWWS and the relationship between reproductive tract development and urinary system development, but additionally improve the level of genetic counseling for HWWS.


Assuntos
Anormalidades Múltiplas , Anormalidades Congênitas/genética , Variação Genética , Nefropatias/congênito , Rim/anormalidades , Anormalidades Urogenitais/genética , Adolescente , Adulto , Criança , Anormalidades Congênitas/diagnóstico , Feminino , Predisposição Genética para Doença , Heterozigoto , Humanos , Nefropatias/diagnóstico , Nefropatias/genética , Fenótipo , Estudos Retrospectivos , Fatores de Risco , Síndrome , Anormalidades Urogenitais/diagnóstico , Sequenciamento do Exoma , Adulto Jovem
6.
J Ovarian Res ; 12(1): 119, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31810472

RESUMO

BACKGROUND: To dissect the genetic causes underlying diminished ovarian reserve (DOR) and premature ovarian insufficiency (POI) within a family. METHODS: Whole-exome sequencing of the proband was performed and DOR and Sanger sequencing was carried out to validate presence of the variant in the proband and her mother. In silico algorithms were used to analyze the mutational effect of the variant. PSIPRED (PSI-blast based secondary structure PREDiction) was used for predicting mutated protein secondary structures. RESULTS: Using whole-exome sequencing, we found that the proband carries the mutation c.2525A > C;p.Q842P in EIF4ENIF, a POI-related gene. Through Sanger sequencing, we found that the proband's mother also carries the same mutation. Online bioinformatics analysis suggests that the mutation is a pathogenic mutation. Secondary structural biology prediction analysis indicates that the mutation either causes the destruction of the α-helical structure around the mutation site or reduces the α-helix. CONCLUSIONS: This mutation is the second novel mutation of EIF4ENIF1 that has been identified in POI patients. This study thus provides a theoretical basis for POI genetics and POI clinical genetic counseling.


Assuntos
Proteínas de Transporte Nucleocitoplasmático/genética , Reserva Ovariana/genética , Insuficiência Ovariana Primária/genética , Adulto , Feminino , Humanos , Mutação , Sequenciamento do Exoma
7.
J Pediatr Adolesc Gynecol ; 32(5): 550-554, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31233831

RESUMO

STUDY OBJECTIVE: The purpose of this study was to determine if there are any genetic changes with whole-exome sequencing associated with distal vaginal atresia. DESIGN: This was a retrospective genetics study of 5 patients who presented with distal vaginal atresia who were recruited between 2017 and 2018. Whole-exome sequencing was performed in each subject with distal vaginal atresia. Sanger sequencing was used to confirm the potential causative genetic mutation. SETTING: Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China. PARTICIPANTS AND MAIN OUTCOME MEASURES: The main outcome measure was the rare mutations potentially associated with distal vaginal atresia in 5 patients. RESULTS: A truncating mutation c.266delC (p.P89Rfs*5) in the T-box transcription factor 6 (TBX6) gene, which is highly expressed in the human vagina, was identified in 1 patient using whole-exome sequencing. The deletion of the 16p11.2 region containing the TBX6 locus has also been reported previously to have the clinical feature of Müllerian agenesis. This mutation was paternally inherited by the patient. This truncating mutation was absent from all of the databases we checked, suggesting that the variant is rare and pathogenic. CONCLUSION: We showed, to our knowledge, for the first time, that the mutation in TBX6 might be associated with human distal vaginal atresia.


Assuntos
Anormalidades Congênitas/genética , Sequenciamento do Exoma/métodos , Proteínas com Domínio T/genética , Vagina/anormalidades , Adolescente , China , Feminino , Humanos , Lactente , Mutação com Perda de Função , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...